Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility.

نویسندگان

  • Sheena Abraham
  • Sean Brahim
  • Kazuhiko Ishihara
  • Anthony Guiseppi-Elie
چکیده

The strategy of phospholipid-based biomimicry has been used to molecularly engineer poly(2-hydroxyethyl methacrylate) [p(HEMA)]-based hydrogels for improved in vitro and potential in vivo biocompatibility. Two methacrylate-based monomers, poly(ethylene glycol) (200) monomethacrylate (PEGMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC), were incorporated at varying mole fractions of 0.0-0.5 mol% PEGMA and 0-10 mol% MPC respectively, into 3 mol% tetraethyleneglycol diacrylate (TEGDA) cross-linked p(HEMA) networks. Upon hydration of these engineered hydrogels, a reduction in receding contact angle from 22+/-1.2 degrees for p(HEMA) to 8+/-2.7 degrees for p(HEMA) containing 0.5:10 mol% PEGMA:MPC was observed, reflecting the significant increase in surface hydrophilicity with increasing PEGMA and MPC content upon prolonged hydration. Hydrogels containing MPC showed a temporal increase in hydrophilicity following continuous immersion in DI water over 5 days. Hydrogels containing 0.5 mol% PEGMA and MPC in the range of 5-10 mol% displayed reduced protein adsorption when incubated with the common extracellular matrix proteins; fibronectin, collagen or laminin, producing up to 64% less protein adsorption compared to p(HEMA). Compositional optima for cell viability and proliferation established from two-factor Central Composite design analysis of human muscle fibroblasts cultured on these hydrogels suggest that those containing PEGMA between 0.3 and 0.5 mol% and MPC levels around 5-10 mol% exhibit desirable characteristics for implant material coatings-high viability (>80%) with low proliferation (<40%), confirming a lack of cytotoxicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part II. Copolymers with positive and negative charges, polyelectrolyte complexes.

Crosslinked macroporous hydrogels based on 2-hydroxyethyl methacrylate (HEMA)-[2-(methacryloyloxy)ethyl]trimethylammonium chloride (MOETACl) copolymer, HEMA-MOETACl-methacrylic acid (MA) terpolymer, and on a polyelectrolyte complex of HEMA-MA copolymer with poly(MOETACl) were prepared. All the hydrogels were prepared in the presence of fractionated sodium chloride particles. The hydrogels were ...

متن کامل

New concepts in controlled drug delivery

A large number of both natural and synthetic polymers have been studied for powible application in drug delivery. The great advantage of synthetic polymers is their advantageous properties and wide choice availability. Two promising synthetic polymers which have been developed for biomedical applications are polyvinylpyrolidone and polyethylene glycol acrylate based hydrogels. Both of them are ...

متن کامل

Cyclodextrin-containing hydrogels as an intraocular lens for sustained drug release

To improve the efficacy of anti-inflammatory factors in patients who undergo cataract surgery, poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (p(HEMA-co-MMA)) hydrogels containing β-cyclodextrin (β-CD) (pHEMA/MMA/β-CD) were designed and prepared as intraocular lens (IOLs) biomaterials that could be loaded with and achieve the sustained release of dexamethasone. A series of pHEMA/MMA/β...

متن کامل

Imprinted Contact Lenses for Sustained Release of Polymyxin B and Related Antimicrobial Peptides.

The aim of this work was to develop drug-soft contact lens combination products suitable for controlled release of antimicrobial peptides on the ocular surface. Incorporation of functional monomers and the application of molecular imprinting techniques were explored to endow 2-hydroxyethyl methacrylate (HEMA) hydrogels with the ability to load and to sustain the release of polymyxin B and vanco...

متن کامل

Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 4: growth of rat bone marrow stromal cells in three-dimensional hydrogels with positive and negative surface charges and in polyelectrolyte complexes.

The growth of bone marrow stromal cells was assessed in vitro in macroporous hydrogels based on 2-hydro- xyethyl methacrylate (HEMA) copolymers with different electric charges. Copolymers of HEMA with sodium methacrylate (MA(-)) carried a negative electric charge, copolymers of HEMA with [2-(methacryloyloxy)ethyl] trimethylammonium chloride (MOETA(-)) carried a positive electric charge and terp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 26 23  شماره 

صفحات  -

تاریخ انتشار 2005